Number Chains and Digit Wheels

What’s this one all about?

A number chain is what you get if you keep adding the same number to a number.

4 --> 6 --> 8 --> 10 --> 12 etc

A digit wheel is what you get if you put dots round a circle, number them 0 to 9 and then join the dots to show the last digit of each number in the chain.

4 --> 6 --> 8 --> 0 --> 2 etc

The patterns you get are super, and it is great for really consolidating adding and subtracting single digits to and from 2-digit numbers.

Lots to investigate here - it will keep them busy for a week if you want!

The teacher bits...

Learning Intentions:

I can add and subtract single digits to and from a larger number. I can spot a pattern. I can use a diagram to record my discoveries. I can count forwards and backwards in 2s, 4s, 6s or 8s. I can count forwards and backwards in 5s. I can count forwards and backwards in 1s, 3s, 7s or 9s.

Age: 7-9

What you need: Pencil and paper. Pupil worksheets. Access to the online pattern builder.
The investigation

Class Discussion

Explain to the pupils that they are going to tackle a series of investigations. Discuss the problem solving strategies that the pupils are familiar with. Highlight the following as being useful for these investigations.

- Draw a diagram – this is likely to be a very useful strategy. We are going to use arrow diagrams and circle diagrams in this case.
- Look for a pattern – these investigations are all about pattern in numbers. There will be lots of patterns to spot!

Discuss the importance of the pupils recording their thinking as they work. They will need to draw/write their diagrams and calculations in a way that allows them to refer back to work they have already done, so it will be helpful to keep their notes organised as they go along.

Open up the pattern builder for ‘Adding 2’ on the interactive board.

Ask the pupils for a 2-digit starting number ending in zero (eg 40).

Show them how to build a pattern beginning with 40 and repeatedly adding 2 as follows. (A double use of the ‘fill down’ tool makes the pattern very quick to build.)
Show the pupils how to record these numbers as a number chain:

Add 2

40 → 42 → 44 → 46 → 48 → 50 → 52 etc.

Repeat with a different starting number (eg 64) and build a second chain below the first one.

Continue with several more starting numbers until you have a series of chains like this:

Add 2

40 → 42 → 44 → 46 → 48 → 50 → 52
64 → 66 → 68 → 70 → 72 → 74 → 76
28 → 30 → 32 → 34 → 36 → 38 → 40
17 → 19 → 21 → 23 → 25 → 27 → 29
59 → 61 → 63 → 65 → 67 → 69 → 71

etc
As you work, engage the children in discussion about the patterns. Highlight the following points (you will hopefully get these from the pupils)

- The ending digits go in a pattern that keeps repeating (e.g., $0 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 8 \rightarrow 0 \rightarrow 2 \rightarrow 4 \rightarrow$)
- If you start on an even number you get only even numbers.
- If you start on an odd number you get only odd numbers.
- Whatever number you start on, you get the same repeating digit patterns. You just begin in a different place.

Show the pupils how to record their findings using a digit wheel.

Example: Here is the wheel for ‘Add 2’.
The dots are joined in the order $0 \rightarrow 2 \rightarrow 4 \rightarrow 6 \rightarrow 8 \rightarrow 0$ and $1 \rightarrow 3 \rightarrow 5 \rightarrow 7 \rightarrow 9 \rightarrow 1$.

First Investigation - Add or Subtract 2, 4, 6 or 8

Individual, Pair or Team Work

Set the pupils the challenge of exploring what happens when you add or subtract 2, 4, 6 or 8. A suggested order for exploration might be as follows:

Add 2 (the pattern above) Subtract 2 (the same pattern in reverse).
Add 4 (a new pattern) Subtract 4 (the same pattern in reverse).
Add 6 (the same pattern as subtract 4) Subtract 6 (the same pattern as add 4)
Add 8 (the same pattern as subtract 2) Subtract 8 (the same pattern as add 2)
Follow-Up Discussion

Engage the pupils in discussion about the patterns. Why do they think they work like this?

What would happen if you did ‘Add 0’ or ‘Subtract 0’. (You would get number chains that go nowhere and a digit wheel with no lines, since adding or subtracting 0 leaves you on the number you start on.)

Project (or draw) large copies of the completed digit wheels on the board and use them to practice ‘counting in 2s’, ‘counting in 4s’, ‘counting in 6s’ and ‘counting in 8s’ starting on any number, moving a pointer round the digit wheel as you count. Practise counting both forwards and backwards. Use the pattern builder to support with finding the correct tens numbers. Note that the tens number goes up or down one each time you go past zero at the top of the wheel.

Follow-up Activities

Get the pupils to work in pairs counting in twos, fours, sixes or eights round the digit wheel. The pupils can take turns, with one putting appropriate numbers into the pattern builder and the other one counting using the wheel without looking at the computer. The one with the computer uses the pattern builder to check the partner’s counting. Then swap.

Set the pupils to do the following investigations on the Learning Ladder as consolidation for homework.
Step 2 – Add Multiples of 2 & Subtract Multiples of 2

Second Investigation - Add or Subtract 5

Individual, Pair or Team Work

Set the pupils the challenge of exploring what happens when you add or subtract 5. A new pattern will emerge.
Follow-Up Discussion

Engage the pupils in discussion about the pattern. Why do they think it works like this? Project (or draw) a large copy of the completed pattern on the board and use it to practice ‘counting in 5s’, starting on any number, moving a pointer back and forth across the digit wheel as you count. Practise counting both forwards and backwards. Use the pattern builder to support with finding the correct tens numbers. Note that the tens numbers go up or down one each time you go past zero at the top of the wheel.

Follow-up Activities

Get the pupils to work in pairs counting in fives using the digit wheel to support. The pupils can take turns, with one putting appropriate numbers into the pattern builder and the other one counting using the wheel without looking at the computer. The one with the computer uses the pattern builder to check the partner’s counting. Then swap.

Set the pupils to do the following investigations on the Learning Ladder as consolidation.

Step 2 – Patterns Adding 5 & Patterns Subtracting 5

Third Investigation - Add or Subtract 1, 3, 7, or 9

Individual, Pair or Team Work

Set the pupils the challenge of exploring what happens when you add 1, 3, 7 or 9. A suggested order for exploration might be as follows:

Add 1 (a new pattern) Subtract 1 (the same pattern in reverse).
Add 3 (a new pattern) Subtract 3 (the same pattern in reverse).
Add 7 (the same pattern as subtract 3) Subtract 7 (the same pattern as add 3)
Add 9 (the same pattern as subtract 1) Subtract 9 (the same pattern as add 1)
Follow-Up Discussion

Engage the pupils in discussion about the patterns. Why do they think they work like this?

Note the symmetry in the patterns:

- Adding 0 \leftrightarrow Subtracting 0
- Adding 1 \leftrightarrow Subtracting 9
- Adding 2 \leftrightarrow Subtracting 8
- Adding 3 \leftrightarrow Subtracting 7
- Adding 4 \leftrightarrow Subtracting 6
- Adding 5 \leftrightarrow Subtracting 5

Project (or draw) large copies of the completed digit wheels on the board and use them to practice ‘counting in 1s’, ‘counting in 3s’, ‘counting in 7s’ and ‘counting in 9s’ starting on any number, moving a pointer round the digit wheel as you count. Practise counting both forwards and backwards. Use the pattern builder to support with finding the correct tens numbers. Note that the tens number goes up or down one each time you go past zero at the top of the wheel.

Follow-up Activities

Get the pupils to work in pairs counting in ones, threes, sevens or nines round the digit wheel. They can take turns, with one putting appropriate numbers into the pattern builder and the other counting using the wheel without looking at the computer. The one with the computer uses the pattern builder to check the partner’s counting. Then swap.

Let the pupils create large versions of the digit wheels for display. They could overlay different wheels on to one another using different colours. From the discussion about symmetry above, the following would be good combinations:

- one colour for ‘add 2 / add 8′, and a different colour for ‘add 4 / add 6′
- colour for ‘add 1 / add 9′, and a different colour for ‘add 3 / add 7′
- ‘add 5′ could be overlaid onto either of these.

The ambitious could try overlaying all five patterns on to each other, using 5 different colours.
Further Development

This investigation would be a useful jumping off point for the further investigations ‘Quick Ways of Adding 9 (and 8)’ and ‘Quick Ways of Subtracting 9 (and 8)’.

It would also link well with any activity for learning the ‘stations’ of the multiplication tables (eg Counting Caterpillar), since these same patterns are the ones that appear in the final digits in the tables.
Number Chains and Digit Wheels

The Investigation

If you start on any number and keep adding or subtracting the same (single-digit number) what happens to the pattern in the units digits? Record your thinking using number chains and digit wheels.

Example – Add 2

40 → 42 → 44 → 46 → 48 → 50 → 52 → 54 → 56 → 58 → 60 →
64 → 66 → 68 → 70 → 72 → 74 → 76 → 78 → 80 → 82 → 84 →
17 → 19 → 21 → 23 → 25 → 27 → 29 → 31 → 33 → 35 → 37 →

The units digits either go

0 → 2 → 4 → 6 → 8 → 0 → 2 → 4 → 6 → 8 → 0 →
or 1 → 3 → 5 → 7 → 9 → 1 → 3 → 5 → 7 → 9 → 1 →
Number Chains

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →

→ → → → → → → → → → →
Digit Wheels

Name: ____________________ Class: ____ Date: __________